GRESHAM PRIMARY SCHOOL CALCULATION POLICY April 2024

Policy Updated: April 2024
Date for Next Update: April 2026

Signed by:

Headteacher
Date:
Chair of governors
Date:

Contents:

STATEMENT OF INTENT \& AIMS OF THE POLICY
CPA (CONCRETE, PICTORIAL, ABSTRACT)
EARLY YEARS
ADDITION
SUBTRACTION
MULTIPLICATION (TIMES TABLES)
MULTIPLICATION
DIVISION
MONITORING AND REVIEW

STATEMENT OF INTENT

This calculation policy has been written in line with the programmes of study taken from the revised National Curriculum for Mathematics. It provides guidance on appropriate calculation methods and progression. The content shows progression between years under the following headings: addition, subtraction, multiplication and division.

Gresham's maths curriculum (available on the school website) also highlights the progression between these key skills and when they will be introduced and taught.

Children will use mental methods as their first port of call when appropriate, but for calculations that they cannot do in their heads, they will need to use an efficient written method accurately and with confidence.

This policy is design to support both educators and parents in supporting children's understanding and application of calculation.

The emphasis, initially, is on mental calculations skills, but progresses to the written strategies that your child is expected to become familiar with. Whilst this document has been organised into the expected outcomes for each year group, it is important to recognise that children develop their mathematical skills at different rates and that you should work with your child, using a combination of practical, mental and written activities, at a level that is suitable to them.

With this said, it is also important to recognise that the maths curriculum aims to develop reasoning and problem-solving skills. These are developed through carefully planned lessons and home learning and also the result of children adhering to the content of their year group. Children who are highly proficient at maths will be challenged appropriately, but always through extending their knowledge of the content for their year group. Rapid progression through the curriculum does not allow for a clear mathematical understanding of what is 'happening' and whilst children can remember rules and patterns, they will not develop their problem solving and reasoning skills.

AIMS OF THE POLICY

- To ensure consistency and progression in our approach to calculation.
- To ensure that children develop an efficient, reliable, formal written method of calculation for all operations.
- To ensure that children can use these methods accurately with confidence and understanding.
- To give parents/carers the confidence to support children in maths at home.

CPA (Concrete, Pictorial, Abstract)

As a result of an overview of the National Curriculum, in 2013 there was a shift in focus. The term 'mastery' was introduced following the success of programmes such as Shanghai Maths and Singapore Maths.

Mastery refers to children acquiring a deep-rooted and secure understanding of maths. Children are introduced to a concept and once embedded they are then encouraged to rationalise and reason. This promotes a deeper understanding and moves away from children having to learn by rote.

With maths mastery in mind, schools will typically use some variation of the CPA approach.

CPA stands for:

- Concrete
- Pictorial
- Abstract

The CPA approach underpins the aims of the National Curriculum. Historically, there has perhaps been a tendency to show progression in maths by rapidly moving children from topic to topic. However, this can lead to a superficial understanding where children rely on learning by rote or following rules or patterns to achieve success. It does not lend itself to gaining a deep understanding.

CPA focuses on the three key stages of mathematical learning and show how children are taught to build upon existing knowledge.

Concrete refers to the physical objects that children may use to count and order. These could be counters, cubes or other physical apparatus. This physical representation of a number helps children to 'see' what is happening when they are calculating.

Physical representations follow this. This will include children starting to use number-lines, times tables grids, hundred squares and similar. The children have a secure understanding of number and are now able to represent it visually, without needing physical objects in front of them.

Abstract

At this point children are very secure and familiar with number and can now use written methods to calculate. This will involve more traditional written methods including the column method for addition, subtraction and multiplication and long and short division. Children will be able to explain how these methods work as throughout their time at primary school they will be encouraged to make links between the three stages.

It is of paramount importance to allow children to progress through these stages equally. Abstract written methods are generally introduced and taught in KS2 where they have spent the majority of EYFS and KS1 focussing on concrete and pictorial examples.

Children who are introduced to abstract concepts too early, without a secure grasp of the concrete and pictorial stages can result in children 'learning by rote' where they can remember a set of rules to find an answer, but they cannot explain how or why their answer is correct.

The following pages offer visual examples of how the four operations (addition, subtraction, multiplication and division) are taught throughout Gresham.

Early Years

A key priority of any Primary School maths curriculum is to ensure that children develop a strong sense of number and place value. Children will continually encounter numbers in the world around them. The ability to recognise the symbol 5, and name it, is very different from understanding the 'fiveness' of it, and it is the development of this latter skill that is crucial to a child's mathematical ability.

Furthermore, it is important to recognise that just because a child can recite number names in order, does not necessarily mean that they can count. As with learning the alphabet, children can recall a sequence of numbers by rote without any real grasp or understanding of what they mean (hence young children often omit numbers as they count). Gaining familiarity with number names through songs and rhymes is of course helpful, but emphasis should be placed on helping children make links between these number names and the number of objects they equate to.

In the Foundation Stage, as well as teaching the children to count objects, significant attention is given to cultivating number recognition and the development of mental representations. In order to do this, much of their experience with number play in the early years will involve concrete, movable objects. In the Foundation Stage, this secure knowledge of number and place value underpins all calculation that may be taught later in children's school lives.

Constant repetition, embedding and teaching of these key skills ensure the children's deep understanding of number and in the Foundation Stage this can be taught in a number of ways including:

- Writing numbers
- Accurate 1-1 correspondence (touch it, move it, count it).
- A secure understanding of 'what' a number is.
- Recognising numbers visually.
- Use of concrete materials (Dienes and numicon)
- Counting forwards and backwards through a number-line.

The school utilises the White Rose Scheme for maths.

Addition

Below outlines the progressive steps within addition, alongside the representations and models used to teach these.

Skill	Year	Representation and Models*	
Add two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Add 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead strings (20) Number tracks Number lines (labelled) Straws
Add three 1-digit numbers	2	Part-whole model Bar model	Ten frames (within 20) Number shapes
Add 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square
Add two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10 Place value counters
Add with up to 3-digits	3	Part-whole model Bar model	Base 10 Place value counters Column addition
Add with up to 4-digits	4	Part-whole model Bar model	Base 10 Place value counters Column addition
Add with more than 4 digits	5	Part-whole model Bar model	Place value counters Column addition
Add with up to 3 decimal places	5	Part-whole model Bar model	Place value counters Column addition

Year 1
When adding numbers to 10, children can explore both aggregation and augmentation. The part- whole model, discrete and continuous bar model, number shapes and ten frame support aggregation. The combination bar model, ten frame, bead string and number track all support augmentation.
Skill: Add 1 and 2 -digit numbers to within 10

Subtraction

Below outlines the progressive steps within subtraction, alongside the representations and models used to teach these.

Skill	Year	Representation and Models	
Subtract two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Subtract 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead string (20) Number tracks Number lines (labelled) Straws
Subtract 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square
Subtract two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10 Place value counters
Subtract with up to 3- digits	3	Part-whole model Bar model	Base 10 Place value counters Column subtraction
Subtract with up to 4- digits	4	Part-whole model Bar model	Base 10 Place value counters Column subtraction
Subtract with more than 4 digits	5	Part-whole model Bar model	Place value counters Column subtraction
Subtract with up to 3 decimal places	5	Part-whole model Bar model	Place value counters Column subtraction

Skill: Subtract 1-digit numbers within 10 las
Skill: Subtract 1 and 2-digit numbers to 100

Skill: Subtract with up to 3 decimal places \begin{tabular}{l}
Year 5/6

llace value counters
and plain counters on
a place value grid are
the most effective
manipulative when
subtracting decimals
with 1, 2 and then 3
decimal places.
Ensure children have
experience of
subtracting decimals
with a variety of
decimal places. This
includes putting this
into context when
subtracting money
and other measures.

\hline
\end{tabular}

Multiplication - Times Tables

Below outlines the progressive steps within times tables, alongside the representations and models used to teach these.

Skill	Year	Representation and Models*	
Recall and use multiplication and division facts for the 2times table	2	Bar model Number shapes Counters Money	Ten frames Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 5times table	2	Bar model Number shapes Counters Money	Ten frames Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 10times table	2	Hundred square Number shapes Counters Money	Ten frames Bead strings Number lines Base 10
Recall and use multiplication and division facts for the 3times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 4times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 8times table	3	Hundred square Number shapes	Bead strings Number tracks Everyday objects
Recall and use multiplication and division facts for the 6times table	4	Hundred square Number shapes	Bead strings Number tracks Everyday objects
Recall and use multiplication and division facts for the 7times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 9times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 11times table	4	Hundred square Base 10	Place value counters Number lines
Recall and use multiplication and division facts for the 12times table	4	Hundred square Base 10	Place value counters Number lines

Skill: 2 times table	Year 2
	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the two times table, using concrete manipulatives to support. Notice how all the numbers are even and there is a pattern in the ones. Use different models to develop fluency.
Skill: 5 times table	Year 2
	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the five times table, using concrete manipulatives to support. Notice the pattern in the ones as well as highlighting the odd, even, odd, even pattern.

Multiplication

Skill	Year	Representations and Models	
Solve one-step problems with multiplication	$1 / 2$	Bar model Number shapes Counters	Ten frames Bead strings Number lines
Multiply 2-digit by 1-digit numbers	$3 / 4$	Place value counters Base 10	Expanded written method Short written method
Multiply 3-digit by 1-digit numbers	4	Place value counters Base 10	Short written method
Multiply 4-digit by 1-digit numbers	5	Place value counters	Short written method Multiply 2-digit by 2-digit numbers Multiply 2-digit by 3-digit numbers Multiply 2-digit by 4-digit numbers$5^{\text {Place value counters Base }}$10
Short written method Grid method			

Skill: Multiply 4-digit numbers by 2-digit numbers					Year 5/6 When multiplying 4digits by 2-digits, children should be confident in using the formal written method. If they are still struggling with times tables, provide multiplication grids to support when they are focusing on the use of the method. Consider where exchanged digits are placed and make sure this is consistent
TTh	Th	H	T	0	
	2	7	3	9	
\times			2	8	
2^{2}	5^{1}	3^{9}	7^{1}	2	
1^{5}	4	1^{7}	8	0	
7	6	6	9	2	
$2,739 \times 28=76$,					

Division

Below outlines the progressive steps within division, alongside the representations and models used to teach these.

$\left.$| Skills | Year | Representations and Models | |
| :--- | :---: | :---: | :---: |
| Solve one-step problems
 with division (sharing) | $1 / 2$ | Bar model Real life objects | Arrays Counters |
| Solve one-step problems
 with division (grouping) | $1 / 2$ | Real life objects Number
 shapes Bead strings Ten
 frames | Arrays Counters |
| Divide 2-digits by 1-digit (no
 exchange sharing) | 3 | Straws Base 10 Bar mode | Place value counters Part-
 whole model |
| Divide 2-digits by 1-digit
 (sharing with exchange) | 3 | Straws Base 10 Bar model | Place value counters Part-
 whole model |
| Divide 2-digits by 1-digit
 (sharing with remainders) | $3 / 4$ | Straws Base 10 Bar model | Place value counters Part-
 whole model |
| Divide 2-digits by 1-digit
 (grouping) | $4 / 5$ | Place value counters | |
| Counters | | | |\quad| Place value grid Written |
| :---: |
| short division | \right\rvert\,

Skill: Solve 1-step problems using multiplication (sharing) | lhildren solve problems |
| :--- |
| by sharing amounts into |
| equal groups. In Year 1, |
| children use concrete |
| and pictorial |
| representations to solve |
| problems. They are not |
| expected to record |
| division formally. In |
| Year 2, children are |
| introduced to the |
| division symbol. |

Skill: Divide 2-digits by 1-digit (sharing with no exchange) | Year 3 |
| :--- |

Monitoring and Review

This policy is reviewed biennially by the headteacher. Any changes or amendments to this policy will be communicated to all staff members by the headteacher. The scheduled review date for this policy is April 2026.

